

Final Bottling Filtration

Nate Starbard Gusmer Enterprises

Final Bottling Filtration

 The final bottling filtration is the only and ultimate guarantee for a finished wine's quality and stability

Gusmer Enterprises, Inc.*

 Integrity testing the membrane ensures micro retention

Presentation

- Overview of filters and types
- Membrane differences
- Total Costs of Filtration
- Optimization and Operation
- Cleaning and Sterilization
- Integrity Testing
- Troubleshooting

Two Types of Filter Structure

Depth Filter

Thick and fibrous High dirt holding

Thin single-layer film Low dirt holding

Two Types of Filter Performance

Depth Filter

Random pore structure 50 to 99.9% retention Flexible structure Particle unloading

Membrane Filter

Controlled pore structure >99.9% retention Rigid structure No particle unloading

Depth Filter

Benefits: Higher holding capacity Lower cost per filter unit

Problem: Low retention No integrity test

Best use: Remove bulk particles (PREFILTERS)

Membrane Filter

Benefits: High retention reliability

Problem: Lower holding capacity Higher cost per filter

Best use:

Remove micro-organisms (FINAL FILTERS)

Optimized Filtration Train

Pore Size Removal

Removed entities

- Cryptosporidium
- Particles
- Brett
- Yeast
- Some bacteria (All for wine and beer)
- All bacteria
- Virus

Final filter requirements

1.0 µm filter

0.65 µm filter

0.45 µm filter

0.2 µm filter

0.1 µm filter

Cartridge Manufacturing

- What Manufacturing Differences Might you See?
 - Pharma-grade clean room
 - Pharma-grade materials
 - High temp ok, no oils, extractables
 - Semi-automated manufacturing
 - Stringent QC/QA controls
 - 100% testing, high safety factors, no rework
 - Edge lamination
 - Spinning end cap during bonding
 - Pull back of support layers during sealing
 - Dual-viscosity end-cap (MP only)
 - 100% cartridge IT testing (prefilters too)
 - Increased membrane area/number of pleats
 - Some filters have 30% less membrane
 - Like having 8 filters in a 12-rd

- PVDF and PES are cast polymer membranes
 - PVDF is polyvinyl difluoride
 - PES is polyether sulfone

- The membranes have different structures
 - PVDF is a symmetric membrane
 - PES is an asymmetric membrane
- The membranes have different surface treatments

Membrane Cross-Sections

PVDF

The Membranes

- Membrane chemistry and surface treatment affect the properties and operation of the membrane
 - Protein and color binding
 - Chemical stability
 - Cleanability
- Symmetry also affects many important membrane properties and operation
 - Membrane strength
 - Flow rate and pressure drop
 - Integrity testing
 - Surface tension of fluids

Why we recommend PVDF?

- Less color and protein removal
- More cleaning cycles before loss of permeability
- Slower loss of permeability
- Higher general robustness
- More reliable IT testing
- Increased throughput offsets higher unit cost

Lower Total Costs of Filtration

 Gallons throughput per filter or change-out is the key metric to monitor.

Total Costs of Filtration

- Each scenario is a little different
 - How to value liquid wine ?
 - What does the operation look like ?
 - After throughput, frequency of plugging (even when not leading to a change out) is important
- Three angles to look at
 - (1) A higher throughput filter can usually directly match or beat a lower quality and priced cartridge based on fewer cartridges used
 - (2) The Total Costs of Filtration savings (wine loss, downtime, utilities, operator labor) are usually comparable to total filter spend
 - (3) A single QA incident costs many years of filter purchases

 Membrane filters are expensive when they prematurely plug ...

Gusmer Enterprises, Inc.*

- ... They are inexpensive when they achieve their full life
 - A 30" Vitipore II Plus could filter 100,000+ gallons
 - The cost at that level for filtration is \$.004 per gal or 8 hundredths of a cent per bottle

System Sizing

- Size your final Vitipore II Plus Filter at 6 to 10 gpm per 30 inch cartridge, rounding to the nearest housing size as shown in the table
- Recommend using one size larger than the final filters for the Bevigard prefilters
- Water prefiltration should be sized
 1.5x final filtration
- Clarification housings and other applications need individual sizing

Housing Size
1-Rd 30"
3-Rd 30"
5-Rd 30"
8-Rd 30"
12-Rd 30"

Parallel (Dual) Filtration Skids

- Allows continuous bottling in the event of plugging, cleaning, wine or tank changes, etc.
- Allows for longer cleaning cycles
- Allows for specialized cleaning cycles (eg. citric acid to remove flavors or water deposits)

Frequently Vent Housings

Gusmer Enterprises, Inc.*

- Especially on start-up and CIP
- Monitor differential pressures
- Track gallons throughput

Plugging Mechanisms

TYPES OF PARTICLES

* HARD -SAND, D.E., DUST, METAL FINES -EASY TO FILTER * DEFORMABLE -COLLOIDS, GELS, MICROBAL PRODUCTS, CLAYS -DIFFICULT TO FILTER

Plugging Mechanisms

Conclusions on Filter Plugging

Filter plugging depends on:

The **type of filter** used (depth/membrane, pore size rating)

The quality/filterability of the feed

The speed (flow rate) at which particles are deposited on the filter

Filter plugging's visible result is: Increase in **Pressure Drop** across the filters over time

Filter plugging can be delayed by: Consistent operation Feed preparation Controlling water quality used for cleaning Proper Cleaning regimens

\rightarrow Purposes:

Gusmer Enterprises, Inc.*

- Improve overall filtration costs by extending filter life
- Eliminate flavor and color carryover

→Limiting factors:

- Bound proteins at high temperature
- Nature of plugging materials (inorganics not cleanable Si, Al)

Filter Cleaning

Cleaning Extends Filter Life

- Recommended procedure:
 - Cold water rinse; at least 10 minutes
 - Hot water cleaning and/or sanitation
 - Cold water cool-down

- Use the same flow rate as the process is run
- Gradual warm and hot water temperature increases to the final 180 F offers more efficient cleaning

Filter Sanitization and Storage

- Purpose:
 - Kill micro-organisms to prevent bioburden growth
 - Prevent biofilm attachment to stainless steel surfaces (piping, housing)
- Limiting factors:
 - Contact time, temperature

→ The maximum allowable pressure drop across the cartridges varies with the fluid temperature.

Fluid temperature	Maximum DP allowed
25 C (77 F)	80 psid
80 C (176 F)	25 psid
93 C (200 F)	20 psid

- → 135 F is the temperature at which many proteins are baked onto the membrane – always cold and/or warm water rinse before reaching this temperature
 - Nothing, outside of terrible feed quality, can impact filter life more

• Water used for cleaning and sanitation must be softened and filtered prior to use

Gusmer Enterprises, Inc.*

- Water can be very high in plugging materials and build un-cleanable deposits onto the membrane
- Facilities that have properly cleaned water have seen as much as a 25% decrease in cartridge filter spend

\rightarrow Why Perform an Integrity Test?

Assurance of filter retention and bottled product quality

→ Method to Detect System Leaks From:

- Improper filter installation
- Damaged filters

Gusmer Enterprises, Inc.*

Damaged filter o-ring or other gasket seal

Integrity Test Principles

When to Perform an Integrity Test?

- \rightarrow Whenever new final filters are installed
 - To ensure proper installation
- \rightarrow After every cleaning and sanitation procedure
 - Especially at high temperature
 - Most common time of cartridge damage
- → After long term storage

Gusmer Enterprises, Inc.*

- To ensure integrity has been maintained
- \rightarrow End of run
 - To show bottled product is safe
- \rightarrow When post-final filter tests show micro counts
 - Are the filters by-passing / non-integral ?
 - Is there post-filter contamination ?

Troubleshooting

- Vitipore II filters are all double integrity tested in manufacturing with proprietary gas
 - No defective cartridges or membrane defects leaving the plant
- Carefully inspect shipping boxes for damage
- If ever an IT failure, contact Gusmer and arrange for a filter evaluation.
 - Every IT failure will be verified and sent back to Millipore for analysis free of charge if needed
- Filter end of life should be throughput based never IT failure

Troubleshooting

- In multi-round setups, with good clarification, we want each Vitipore II to get 100,000 gallons throughput over its life.
 - When protected by Bevigard M
 - Wine must be properly prepared and clarified
 - Water should be filtered, softened
 - Cleaning must be carried out efficiently
- Contact Gusmer for recommendations on filter optimization
 - Always track throughput!!
- We've helped customers who super-optimize get as high as 300,000 gallons per 30" in multi-rounds (>3M per 12-Rd)
 - This is rare but shows the capacity for filter optimization

Thank you, Questions?