Integrity Testing Methods

For Membrane Filters

2018

Bill Merz - Gusmer

- Principles
- Bubble Point
- Pressure Decay Pressure Hold / Diffusion
- Automated

Microfiltration Set-up

→Which Cartridges?

- Only the membrane (final) filters.
 - Not the prefilters.

→ Why Perform an Integrity Test?

Assurance of filter retention and bottled product quality

→ Method to Detect System Leaks From:

- Improper filter installation
- Damaged filter O-ring or other gasket seal
- Damaged filters from
 - Excessive pressure drop
 - Valve opening/closing speed (pressure hammer)
 - DP during hot CIP on plugged filters
 - Chemical attack

→When to Perform an Integrity Test?

→Membrane Filters are Installed (New or after long term storage)

To ensure proper installation and membrane integrity

→After Every Chemical / Sanitation Procedure

- Especially if ran at high temperature like 190 F hot water sanitization
- →After Bottling Run
 - To ensure integrity throughout the bottling run

Non Destructive - Integrity Test Principles

PVDF microporous Membrane

• The integrity test measures or observes the passage of gas under controlled conditions through a wetted membrane.

- Three types
 - Bubble Point
 - Diffusion
 - Pressure Hold

- Bubble Point
 - Pressure at which liquid wetting the membrane is extruded out from the pore

Bubble Point is a Function of Pore Size

• For Vitipore II Membrane Cartridges

Pore Rating	Bubble Point
1 µm	≥9.1 psi
0.65 µm	≥ 14.2 psi
0.45 µm	≥28.4 psi
0.22 µm	≥45.6 psi

Bubble Point: Step 1 – WET THE MEMBRANE

- Shut off line pressure after filter wetting/flushing
- Close:
 - Upstream isolation valve
 - Downstream isolation valve (if possible)
- Open:
 - Both housing drains
 - Dome vent
- Water will drain from upstream and downstream housing sides

Bubble Point: Step 2 - Attach Air Supply to Housing

– Close:

- Upstream housing drain valve
- Air supply valve
- Attach air supply to either:
 - Dome vent
 - Undo vent assembly first
 - Dome pressure gauge port
 - Upstream pressure gauge port
- Set air pressure regulator to 10 psi

Bubble Point: Step 3 - Attach Hose to Drain Valve - Bucket

- Attach a hose to downstream drain valve
- Submerge the hose open end into a water bucket

Bubble Point: Step 4 - Pressurize Housing

– Open air supply valve

MILLIPORE

- Gradually increase pressure regulator, in 5 psi increments
- Allow pressure to stabilize at each increment
- Some water will discharge from downstream drain it is normal
- In slow increments bring the pressure up to bubble point - 28 psi for a Millipore 0.45µm membrane filter

Gradually up to 28 psi Open nc

- Small bubbles may appear prior to the bubble point value... this is normal and is due to diffusion.
- Vigorous bubbling should appear at a value > BP ... indicating an integral filter set up.
- Vigorous bubbling prior to the bubble point indicates a potential failure.
- If failure occurs, set up should be checked and test run again.

Integrity Test Principles - Diffusion

 \rightarrow Fully wetted membrane filters retain water in their pores

 \rightarrow When a constant air pressure is applied to the filter:

- Air will diffuse through the wet filter
- Upstream air pressure will drop

 \rightarrow Measure air pressure drop on the housing upstream side

Diffusion is a Function of Pore Size

• For Vitipore II Membrane Cartridges

Pore Rating	Air Diffusion (30 inch at 23-25 c)
1 µm	\leq 12 ml/min at 7.25 psig
0.65 µm	\leq 24 ml/min at 9 psig
0.45 µm	\leq 45 ml/min at 22 psig
0.22 µm	\leq 13.3 ml/min at 41 psig*

• * 10 inch cartridge

• Diffusion Flow

- Diffusional flow integrity test measures the gas diffusion rate
- This is typically done at 80% of the bubble point pressure
- An integral membrane will diffuse at a specific rate (mls/min/cartridge)

- Pressure Hold
 - Housing is pressurized to 80% of bubble point
 - Gas supply is turned off
 - Integrity is determined by how fast the pressure drops

• Pressure Hold

If the pressure drops too fast (i.e. 2 psi in five minutes), than you failed this gross integrity test & troubleshooting should occur

This method is not as accurate as the diffusion test without precise pressure gauges

Troubleshooting of Upstream Leak

\rightarrow Loss of pressure due to hardware leak

- Housing
- Upstream piping
- \rightarrow Examine the following areas:
 - Dome-to-base housing gasket condition
 - No flat areas, no nicks or abrasion, no "home-made" gaskets
 - Threaded connections
 - Re-seal with Teflon tape
 - Valves
 - Replace valve seat or valve itself
 - Avoid Teflon gaskets
 - EPDM or silicone give better seal

Troubleshooting-Upstream-to-Downstream Leak

- Filters not fully wetted
 - Almost always the cause of this type of problem
 - Re-wet using procedure previously described
- Filters O-rings were rolled or damaged during installation
 - Remove dome and filters to inspect O-rings
- Housing internal O-rings are missing or damaged
 - Remove base plate where filters are installed and inspect
- Filters are not integral
 - Contact Gusmer
 - Save the filters (bag and store in cool place) for return/analysis

Shut Down / Short Term Storage

- Shut Down
 - Push wine from housing with Nitrogen
 - Flush with ambient temperature water in forward direction (integrity test?)
 - Warm water regeneration cycle followed by a sanitation cycle
 - Pressurize housing with a little filtered nitrogen
 - Close valves

System is good for overnight or a weekend

Long Term Storage

- Long Term Storage
 - Most frequently cartridges are removed from the housings
 - O-rings are removed
 - Cartridges are stored in solution of S02 (300-500 ppm) and citric acid (pH 3.5)

