Wine Filtration Filter Sheets & Lenticular Stacks

Rob Tinkham Gusmer Wine – Technical Seminar May 15-17, 2018

Agenda

- Filtration Basics/Goals
- Depth Filtration Mechanisms
- Filter Sheets
- Lenticular Stacks
- Key Operating Parameters

Goals of Filtration

- Solids Reduction
- Visual Clarity
- Microbial Stability
- Sterile Packaging

• PARTICLE REMOVAL

Is Filtration the Only Way?

- Other Ways to Remove Particles...
 - -Racking (Gravity)
 - -Fining Agents + Racking (Gravity)
 - Decanters/Centrifuge (Centrifugal Force)

A typical winery uses multiple methods to remove particles

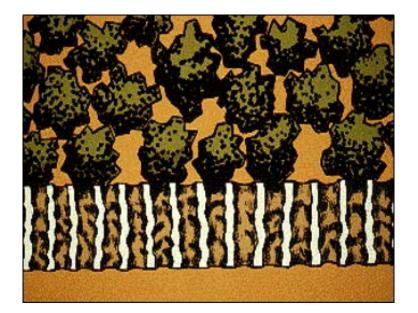
What type of particles?

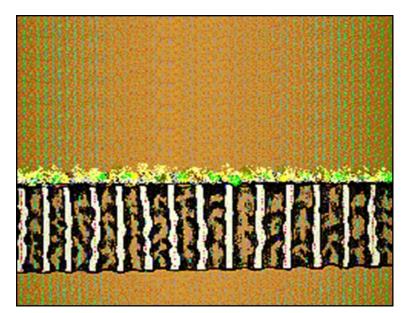
<u>Rigid Particles</u>

- DE/Fibers
- Tartrate Crystals
- Sand/Grit
- Fining Agents
 (carbon, bentonite, etc.)
- Oak Alternatives

Soft Particles

- Colloidal Proteins
- Colloidal Phenolics
- Lipids
- Polysaccharides
- Yeast/Bacteria
- Grape Solids
- Fining Agents
 (gelatin, isinglass, etc.)
- Insoluble particles most fluids have both types


How do they behave?


Rigid Particles

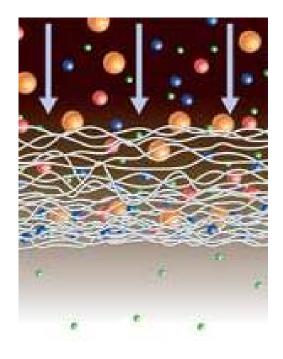
Accumulate, leaving channels

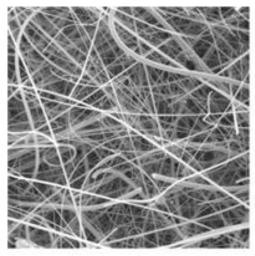
Soft Particles

Often flatten our or stick together creating a blocking layer

What's in Your Soup?

- Wine can be considered a "soup" of deformable and rigid particles that range from <0.2 microns to 100 microns
- Goal: High solids + high turbidity→low solids + brilliant clarity

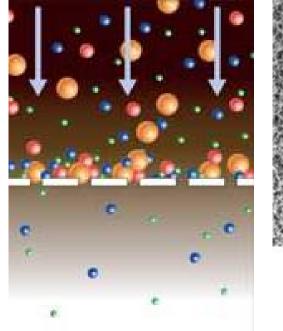

Difficult to filter in one easy step with conventional technology!

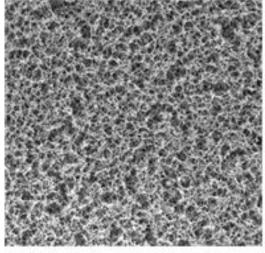


Depth Filtration

A thick layer of filter media where filtration occurs on the surface AND interior of the matrix.

- Advantage High particle holding capacity
- Disadvantage Nominal micron rating





Surface Filtration

Thin layer of filter media where filtration occurs at the surface

- Advantage Absolute micron rating
- Disadvantage Low particle holding capacity

Achieving Economical Sterile Filtration

Best Solution

Depth (high particle loading capacity)+ Surface (absolute rating/efficient)

Economical Sterile Filtration

Sequential Filtration

Winemaking Process

Fermenting Wine One Million Cells/mL + Grape Solids 5% solids, 200 NTU Turbidity

Gross Solids Reduction Getting wine off solids (reduce chance of H2S forming) 1M cells/mL to ~500,000cells/mL ↓

> Blending, Fining, Stabilizing Initial Clarification ~500,000cells/mL to ~50k cells/mL

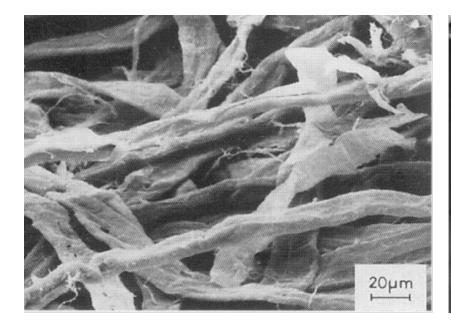
↓ Prepare for Bottling Sterile Prep ~50k cells/mL to ~9-10cells/mL ↓ Bottling < 1 cell/ml

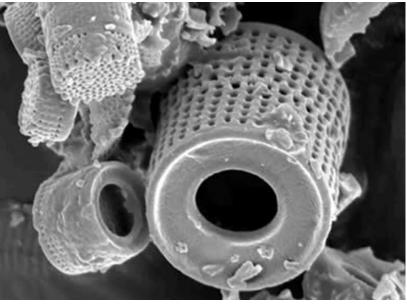
Filtration Steps

Lees Filtration Recessed plate or rotary drum vacuum filters

Rough Filtration Course Filter Grade (CSF-SC) Still cloudy but solids reduced (~50NTU)

Polished Filtration Polish Filter Grade (CSF-SP) Starting to see some clarity (~5NTU)


Pre-Membrane Filtration Pre-membrane Filter Grade (CSF-UF) Brilliant clarity starting to be seen (~0.5-1NTU)


> Sterile Filtration Brilliant, sterile wine (~ 0.5 NTU)

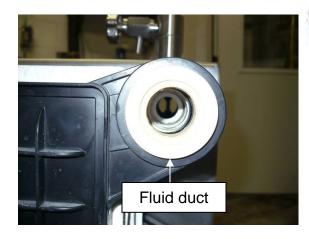
Gusmer Enterprises, Inc.

Depth Filter Media



Cellulose Fibers Diatomaceous Earth(DE) + Resin (Binder)

Filtration Mechanisms



Gradient Density Matrix

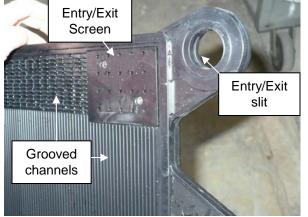
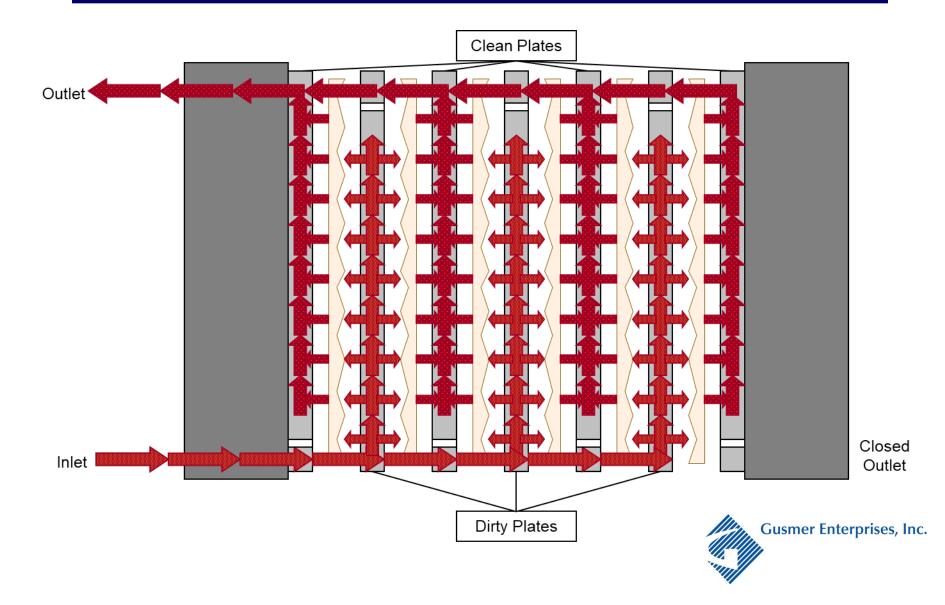

- Some particles are too big to enter the filter, remain trapped on the surface (Sieving)
- 2. Some particles enter the filters pores and become trapped in the tortuous matrix (Entrapment)
- 3. If charged, some particles are attracted to the charge and become trapped (Adsorption)

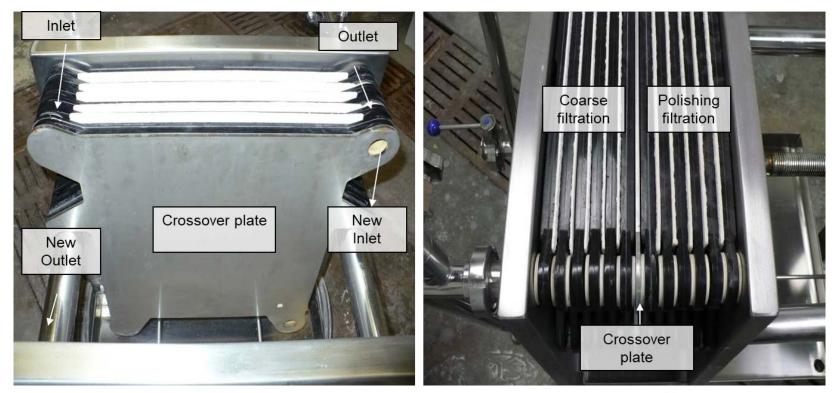
Plate Filter Press

Advantages:

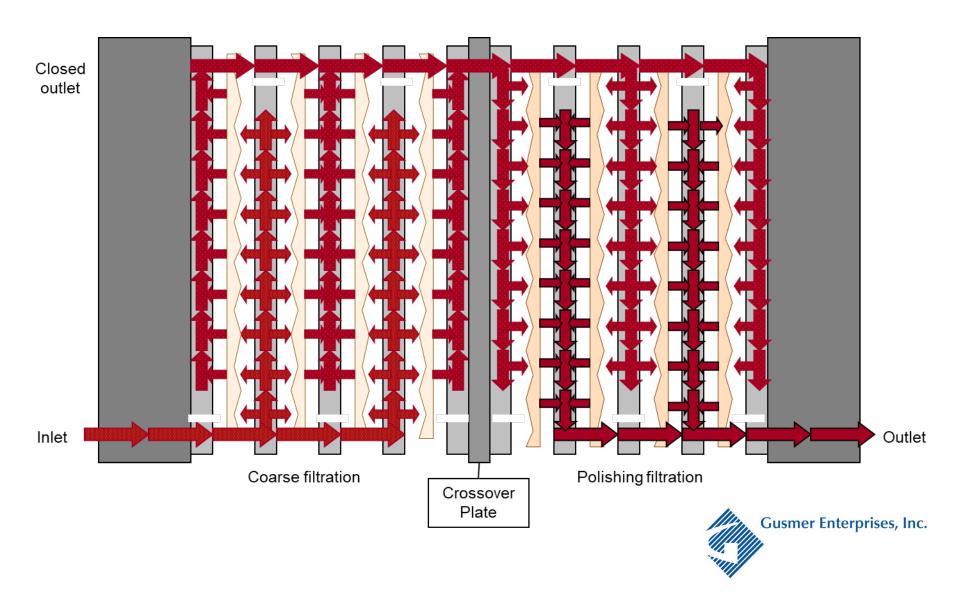

- Consistent performance
- Lower cost (than stacks)
- Less waste (than stacks)

Disadvantages:

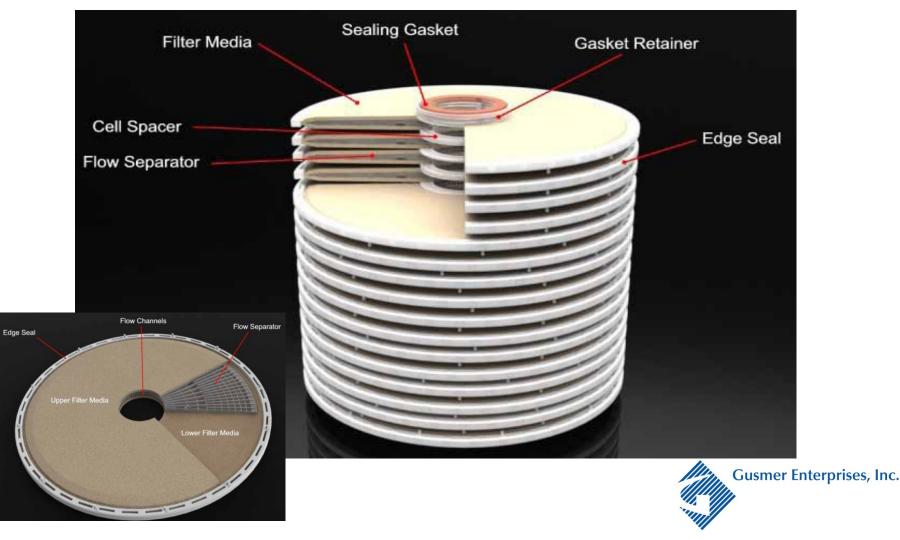
- some leakage (catch & return)
- longer set-up time (than stacks)



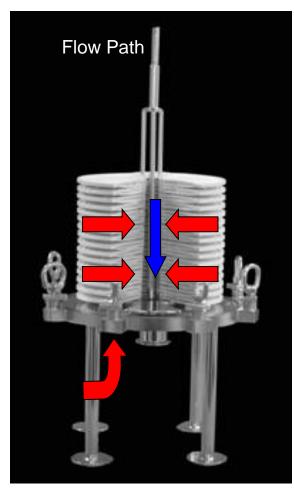
Filtration Flow Diagram – Top View


Multi-Step Filtration

Two filtration steps can be completed in the same filter press by placing a crossover plate between filter grades



Multi-Step Filtration Flow Diagram – Top View



Lenticular Cartridge Filters

•Filter sheet media pre-assembled into a "stack" for fully enclosed filtration

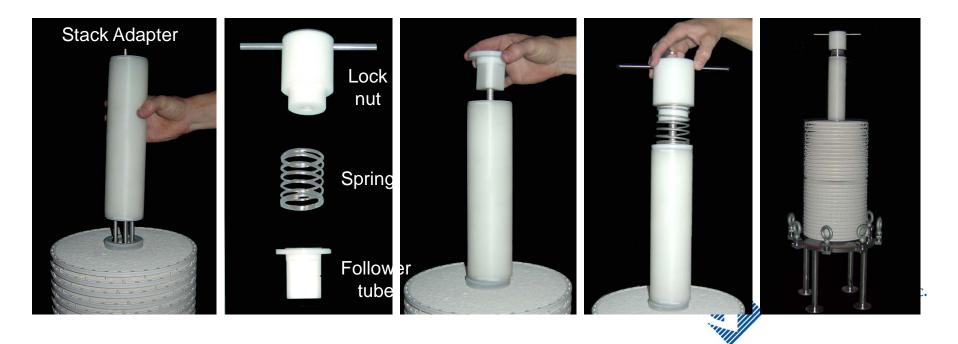
Lenticular Cartridge Filters

Advantages:

- Consistent performance
- Leak Free/Low loss
- Limited air exposure
- Quick set-up/Easy use

Disadvantages:

- More expensive (than sheets)
- Sensitive to backflow (easily avoided with check valve)
- More waste disposal



Lenticular Cartridge Filters

•Quick & Easy Set-up:

- Place stacks on center post. If using less than housing's normal # of stacks, add a stack adapter
- Hand tighten lock nut assembly
- Replace & tighten housing dome

Pro & Con - Lenticular vs. Sheets

- Lenticular Cartridge
 - Full range of filter media
 - Easy to load
 - Small footprint
 - No Dripping
 - Sealed (more sanitary)
 - More expensive per square foot of filter media
 - Low holdup volume

- Filter Sheet
 - Full range of filter media
 - Takes more time to load
 - Larger footprint
 - Drips
 - Exposed edges of filter media (less sanitary)
 - Less expensive per square foot of filter media
 Gusmer Enterprises, Inc.

Important Filtration Parameters

Flow Rate

•Speed limits

- •Filter grade (\downarrow pore size = \downarrow flow rate)
- •Surface area (gpm/ft², \uparrow ft² = \uparrow gpm)

Differential Pressure

Differential = inlet – outlet
 Pressure increases exponentially near termination

Application / Flow Rates / ΔP

Application Guide						
Application	Filter Grades	Recommended Flow Rates g/hr/sqft	Max. Flow Rates g/hr/sqft	Max. Diff. Pressure		
Coarse Filtration	1925-1940	24 to 32	30 to 40	45		
Polish/Clarifying Filtration	1945-1960	8 to 24	20 to 30	45		
Sterile Prep./Pre- Membrane Filtration	1965-1975	3 to 12	10 to 15	21		

- Efficiency dependent on processing conditions (flow rate, differential pressures, particle type, etc.)
 - Lower flow rates allow for better retention
 - Lower differential pressures allow for better retention

Gusmer Enterprises, Inc.

Filter Grades & Sizes

- Grades
 - Wide range of porosity and retention rates available
 - 0.3 to 20 microns (nominal retention)
- Size
 - Lenticular 12 inch diameter (6, 9, 13 and 16 cells)
 - 1.11 square feet (effective area) / cell
 - 16 cells... equals 17.7 square feet per filter
 - Lenticular 16 inch diameter (16 cells)
 - 2.375 square feet (effective area) / cell
 - 16 cells... equals 38.0 square feet per filter
 - Filter sheets many sizes
 - have to consider edge loss when determining effective area (this varies from press to press)
 - assume a 1cm edge loss when determining effective area
 - 40cm sheet... equals 1.5 square feet per filter

Basic System Sizing

- Determine the recommended flow rate for the application (i.e. polish filtration)
- Determine the desired GPM (i.e. 1,000 gph)
- Determine the square footage of media required to achieve the desired flow rate
 Polish filter wine at a flow rate of 1,000 gph
 Recommended flow rate = 16 g/h/sqft
 Square feet required = 62.5 sqft
 Number of Lenticular Cartridges = 3.5 (4)
 Number of 40cm Filter Sheets = 41.6 (42)

Why Slow Down?

Example: Wine was passed through a premembrane filter sheet at 5 or 15gal/hr/ft² flow rate

5 gal/hr/ft² = 0.54 NTU Fl 13 15 gal/hr/ft² = 0.72 NTU Fl 21

FI = Membrane Filterability Index (higher # indicates more difficult to sterile filter)

Why Monitor Pressure?

- 1) Efficiency: Pressure above the recommended maximum can decrease filtration efficiency (just like high flow rates)
- 2) Anticipation: An increase in differential pressure indicates that the filter is beginning to plug & will need to be changed soon
- 3) Optimization: If pressure does not increase when filtering a product, it may indicate that a tighter (smaller pore) filter grade or less filter area could be used

Golden Rules of Wine Filtration

- 1. Every wine filters differently.
- 2. Turbidity is not a good indicator of filterability.
- 3. Speed (high flow rate) is not your friend!
- 4. High pressure (Differential) is not your friend!
- 5. Depth filters are the work horse (take out bulk solids to protect the sterile membrane).

Filter Press Troubleshooting

Symptom	Underlying Issue	Root Cause	Solution
Leakage	Poor seal at the	Worn or cracked gaskets	Replace gaskets; use operator manual or contact the supplier to determine thickness
	gasket	Incorrect gasket size	Replace gaskets with gaskets that are the correct thickness (see above)
		Insufficient filter press tightening	If unable to properly tighten the press by hand, a "cheater" bar or hydraulic closure can be used
	Poor seal around the media	Misaligned sheets	Take your time and carefully align each sheet while dressing the press to ensure proper sealing
		Missing guide rods	Short-term: carefully hold sheets while tightening press Long-term: purchase replacement rods
	Incorrect operating parameters	High pressure or excessive flow rate	Follow filter sheet product literature for proper operating conditions of grade in use
Unexpected short life	Filter sheets placed backwards	Gradient density in opposite direction	Always face the cockled side of the sheet towards the plate with an un-gasketed inlet port
	Incorrect operating parameters	High pressure or excessive flow rate	Follow filter sheet product literature for proper operating conditions of grade in use
Unexpected breakthrough	Incorrect operating parameters	High pressure or excessive flow rate	Follow filter sheet product literature for proper operating conditions of grade in use

FOR REFERENCE


Lenticular Filter Troubleshooting

Symptom	Underlying Issue	Root Cause	Solution
Unexpected breakthrough		Unintended back-pressure (most common cause)	Always install a quick acting check valve at the exit of the housing
	Stack filter has ruptured	Improper storage (rare)	Never remove wet stacks from housing for storage, if needed, store in closed housing
	Fluid is bypassing the media	Missing stack gasket (most common cause)	Always check each stack to ensure it has its end gaskets while installing
		Center post not properly sealed (rare)	Follow literature instructions to hand tighten the follower assembly, this is sufficient for a proper seal
	Incorrect operating parameters	High pressure or excessive flow rate	Follow filter sheet product literature for proper operating conditions of grade in use
Leakage at base of the housing	Housing is not properly sealed	Torn or misaligned o-ring at housing base (most common cause)	Always inspect the o-ring before use and replace if damaged. Make sure o- ring is properly seated in its grove and housing bolts are snug
		Housing base bolts are not properly tightened (rare)	Follow housing literature instructions to hand tighten the base bolts, a wrench or "cheater" bar can also be used if necessary depending on the housing model

FOR REFERENCE

Questions?

Thank You

